"""Fabex 'image_utils.py' © 2012 Vilem Novak
Functions to render, save, convert and analyze image data.
"""
from math import (
acos,
ceil,
cos,
floor,
pi,
radians,
sin,
tan,
)
from typing import Optional
import os
import random
import time
import numpy as np
import bpy
try:
import bl_ext.blender_org.simplify_curves_plus as curve_simplify
except ImportError:
pass
from mathutils import (
Euler,
Vector,
)
from .async_utils import progress_async
from ..chunk_builder import CamPathChunkBuilder
from .logging_utils import log
from .operation_utils import get_cutter_array
from .parent_utils import parent_child_distance
from .simple_utils import (
progress,
get_cache_path,
)
from .numba_utils import (
jit,
prange,
)
[docs]
def numpy_save(a, iname):
"""Save a NumPy array as an image file in OpenEXR format.
This function converts a NumPy array into an image and saves it using
Blender's rendering capabilities. It sets the image format to OpenEXR
with black and white color mode and a color depth of 32 bits. The image
is saved to the specified filename.
Args:
a (numpy.ndarray): The NumPy array to be converted and saved as an image.
iname (str): The file path where the image will be saved.
"""
inamebase = bpy.path.basename(iname)
i = numpy_to_image(a, inamebase)
render = bpy.context.scene.render
image_settings = render.image_settings
image_settings.file_format = "OPEN_EXR"
image_settings.color_mode = "BW"
image_settings.color_depth = "32"
i.save_render(iname)
# get cutters for the z-buffer image method
[docs]
def numpy_to_image(a: np.ndarray, iname: str) -> bpy.types.Image:
"""Convert a NumPy array to a Blender image.
This function takes a NumPy array and converts it into a Blender image.
It first checks if an image with the specified name and dimensions
already exists in Blender. If it does not exist, a new image is created
with the specified name and dimensions. The pixel data from the NumPy
array is then reshaped and assigned to the image's pixel buffer.
Args:
a (numpy.ndarray): A 2D NumPy array representing the image data.
iname (str): The name to assign to the created or found image.
Returns:
bpy.types.Image: The Blender image object that was created or found.
"""
t = time.time()
width = a.shape[0]
height = a.shape[1]
# Based on the Blender source code: source/blender/makesdna/DNA_ID.h. MAX_ID_NAME=64
# is defining the maximum length of the id and we need to subtract four letters for
# suffix as Blender seems to use the ".%03d" pattern to avoid creating duplicate ids.
iname_59 = iname[:59]
log.info("-")
log.info("~ Converting Numpy Array to Blender Image ~")
log.info(f"Name: {iname}")
log.info(f"Dimensions: {width}x{height}")
def find_image(name: str, width: int, heigh: int) -> Optional[bpy.types.Image]:
if name in bpy.data.images:
image = bpy.data.images[name]
if image.size[0] == width and image.size[1] == height:
return image
return None
image = find_image(iname, width, height) or find_image(iname_59, width, height)
if image is None:
log.info(f"Creating New Image: {iname_59}")
result = bpy.ops.image.new(
name=iname_59,
width=width,
height=height,
color=(0, 0, 0, 1),
alpha=True,
generated_type="BLANK",
float=True,
)
log.info(f"Image Creation: {result}")
# If 'iname_59' id didn't exist previously, then
# it should have been created without changing its id.
image = bpy.data.images[iname_59]
a = a.swapaxes(0, 1)
a = a.reshape(width * height)
a = a.repeat(4)
a[3::4] = 1
image.pixels[:] = a[:] # this gives big speedup!
log.info(f"Time: {str(time.time() - t)}")
log.info("-")
return image
[docs]
def image_to_numpy(i):
"""Convert a Blender image to a NumPy array.
This function takes a Blender image object and converts its pixel data
into a NumPy array. It retrieves the pixel data, reshapes it, and swaps
the axes to match the expected format for further processing. The
function also measures the time taken for the conversion and prints it
to the console.
Args:
i (Image): A Blender image object containing pixel data.
Returns:
numpy.ndarray: A 2D NumPy array representing the image pixels.
"""
t = time.time()
width = i.size[0]
height = i.size[1]
na = np.full(shape=(width * height * 4,), fill_value=-10, dtype=np.double)
p = i.pixels[:]
# these 2 lines are about 15% faster than na[:]=i.pixels[:].... whyyyyyyyy!!?!?!?!?!
# Blender image data access is evil.
na[:] = p
na = na[::4]
na = na.reshape(height, width)
na = na.swapaxes(0, 1)
log.info(f"\nTime of Image to Numpy {time.time() - t}")
return na
@jit(nopython=True, parallel=True, fastmath=False, cache=True)
[docs]
def _offset_inner_loop(y1, y2, cutterArrayNan, cwidth, sourceArray, width, height, comparearea):
"""Offset the inner loop for processing a specified area in a 2D array.
This function iterates over a specified range of rows and columns in a
2D array, calculating the maximum value from a source array combined
with a cutter array for each position in the defined area. The results
are stored in the comparearea array, which is updated with the maximum
values found.
Args:
y1 (int): The starting index for the row iteration.
y2 (int): The ending index for the row iteration.
cutterArrayNan (numpy.ndarray): A 2D array used for modifying the source array.
cwidth (int): The width of the area to consider for the maximum calculation.
sourceArray (numpy.ndarray): The source 2D array from which maximum values are derived.
width (int): The width of the source array.
height (int): The height of the source array.
comparearea (numpy.ndarray): A 2D array where the calculated maximum values are stored.
Returns:
None: This function modifies the comparearea in place and does not return a
value.
"""
for y in prange(y1, y2):
for x in range(0, width - cwidth):
comparearea[x, y] = np.nanmax(
sourceArray[x : x + cwidth, y : y + cwidth] + cutterArrayNan
)
[docs]
async def offset_area(o, samples):
"""Offsets the whole image with the cutter and skin offsets.
This function modifies the offset image based on the provided cutter and
skin offsets. It calculates the dimensions of the source and cutter
arrays, initializes an offset image, and processes the image in
segments. The function handles the inversion of the source array if
specified and updates the offset image accordingly. Progress is reported
asynchronously during processing.
Args:
o: An object containing properties such as `update_offset_image_tag`,
`min`, `max`, `inverse`, and `offset_image`.
samples (numpy.ndarray): A 2D array representing the source image data.
Returns:
numpy.ndarray: The updated offset image after applying the cutter and skin offsets.
"""
if o.update_offset_image_tag:
minx, miny, minz, maxx, maxy, maxz = o.min.x, o.min.y, o.min.z, o.max.x, o.max.y, o.max.z
sourceArray = samples
cutterArray = get_cutter_array(o, o.optimisation.pixsize)
width = len(sourceArray)
height = len(sourceArray[0])
cwidth = len(cutterArray)
o.offset_image = np.full(shape=(width, height), fill_value=-10.0, dtype=np.double)
t = time.time()
m = int(cwidth / 2.0)
if o.inverse:
sourceArray = -sourceArray + minz
comparearea = o.offset_image[
m : width - cwidth + m,
m : height - cwidth + m,
]
cutterArrayNan = np.where(
cutterArray > -10, cutterArray, np.full(cutterArray.shape, np.nan)
)
for y in range(0, 10):
y1 = (y * comparearea.shape[1]) // 10
y2 = ((y + 1) * comparearea.shape[1]) // 10
_offset_inner_loop(
y1,
y2,
cutterArrayNan,
cwidth,
sourceArray,
width,
height,
comparearea,
)
await progress_async("Offset Depth Image", int((y2 * 100) / comparearea.shape[1]))
o.offset_image[
m : width - cwidth + m,
m : height - cwidth + m,
] = comparearea
log.info(f"\nOffset Image Time: {time.time() - t}")
o.update_offset_image_tag = False
return o.offset_image
[docs]
def get_sample_image(s, sarray, minz):
"""Get a sample image value from a 2D array based on given coordinates.
This function retrieves a value from a 2D array by performing bilinear
interpolation based on the provided coordinates. It checks if the
coordinates are within the bounds of the array and calculates the
interpolated value accordingly. If the coordinates are out of bounds, it
returns -10.
Args:
s (tuple): A tuple containing the x and y coordinates (float).
sarray (numpy.ndarray): A 2D array from which to sample the image values.
minz (float): A minimum threshold value (not used in the current implementation).
Returns:
float: The interpolated value from the 2D array, or -10 if the coordinates are
out of bounds.
"""
x = s[0]
y = s[1]
if (x < 0 or x > len(sarray) - 1) or (y < 0 or y > len(sarray[0]) - 1):
return -10
else:
minx = floor(x)
maxx = minx + 1
miny = floor(y)
maxy = miny + 1
s1a = sarray[minx, miny]
s2a = sarray[maxx, miny]
s1b = sarray[minx, maxy]
s2b = sarray[maxx, maxy]
# s1a = sarray.item(minx, miny) # most optimal access to array so far
# s2a = sarray.item(maxx, miny)
# s1b = sarray.item(minx, maxy)
# s2b = sarray.item(maxx, maxy)
sa = s1a * (maxx - x) + s2a * (x - minx)
sb = s1b * (maxx - x) + s2b * (x - minx)
z = sa * (maxy - y) + sb * (y - miny)
return z
[docs]
def get_resolution(o):
"""Calculate the resolution based on the dimensions of an object.
This function computes the resolution in both x and y directions by
determining the width and height of the object, adjusting for pixel size
and border width. The resolution is calculated by dividing the
dimensions by the pixel size and adding twice the border width to each
dimension.
Args:
o (object): An object with attributes `max`, `min`, `optimisation`,
and `borderwidth`. The `max` and `min` attributes should
have `x` and `y` properties representing the coordinates,
while `optimisation` should have a `pixsize` attribute.
Returns:
None: This function does not return a value; it performs calculations
to determine resolution.
"""
pixel_size = o.optimisation.pixsize
border_width = o.borderwidth
size_x = o.max.x - o.min.x
size_y = o.max.y - o.min.y
resolution_x = ceil(size_x / pixel_size) + 2 * border_width
resolution_y = ceil(size_y / pixel_size) + 2 * border_width
resolution = resolution_x * resolution_y
[docs]
def _backup_render_settings(pairs):
"""Backup the render settings of Blender objects.
This function iterates over a list of pairs consisting of owners and
their corresponding structure names. It retrieves the properties of each
structure and stores them in a backup list. If the structure is a
Blender object, it saves all its properties that do not start with an
underscore. For simple values, it directly appends them to the
properties list. This is useful for preserving render settings that
Blender does not allow direct access to during rendering.
Args:
pairs (list): A list of tuples where each tuple contains an owner and a structure
name.
Returns:
list: A list containing the backed-up properties of the specified Blender
objects.
"""
scene = bpy.context.scene
view_layer = bpy.context.view_layer
render = scene.render
properties = []
for owner, struct_name in pairs:
obj = getattr(owner, struct_name)
if isinstance(obj, bpy.types.bpy_struct):
# structure, backup all properties
obj_value = {}
for k in dir(obj):
if not k.startswith("_"):
obj_value[k] = getattr(obj, k)
properties.append(obj_value)
else:
# simple value
properties.append(obj)
[docs]
def _restore_render_settings(pairs, properties):
"""Restore render settings for a given owner and structure.
This function takes pairs of owners and structure names along with their
corresponding properties. It iterates through these pairs, retrieves the
appropriate object from the owner using the structure name, and sets the
properties on the object. If the object is an instance of
`bpy.types.bpy_struct`, it updates its attributes; otherwise, it
directly sets the value on the owner.
Args:
pairs (list): A list of tuples where each tuple contains an owner and a structure
name.
properties (list): A list of dictionaries containing property names and their corresponding
values.
"""
scene = bpy.context.scene
view_layer = bpy.context.view_layer
render = scene.render
for (owner, struct_name), obj_value in zip(pairs, properties):
obj = getattr(owner, struct_name)
if isinstance(obj, bpy.types.bpy_struct):
for k, v in obj_value.items():
setattr(obj, k, v)
else:
setattr(owner, struct_name, obj_value)
[docs]
def render_sample_image(o):
"""Render a sample image based on the provided object settings.
This function generates a Z-buffer image for a given object by either
rendering it from scratch or loading an existing image from the cache.
It handles different geometry sources and applies various settings to
ensure the image is rendered correctly. The function also manages backup
and restoration of render settings to maintain the scene's integrity
during the rendering process.
Args:
o (object): An object containing various properties and settings
Returns:
numpy.ndarray: The generated or loaded Z-buffer image as a NumPy array.
"""
t = time.time()
progress("~ Getting Z-Buffer ~")
o.update_offset_image_tag = True
if o.geometry_source in ["OBJECT", "COLLECTION"]:
pixsize = o.optimisation.pixsize
border_width = o.borderwidth
size_x = o.max.x - o.min.x
size_y = o.max.y - o.min.y
resolution_x = ceil(size_x / pixsize) + 2 * border_width
resolution_y = ceil(size_y / pixsize) + 2 * border_width
static_z_buffer = not o.update_z_buffer_image_tag
buffer_resolution_equal = (
len(o.zbuffer_image) == resolution_x and len(o.zbuffer_image[0]) == resolution_y
)
if static_z_buffer and buffer_resolution_equal:
return o.zbuffer_image
# Setup Image name
image_name = get_cache_path(o) + "_z.exr"
if static_z_buffer:
try:
i = bpy.data.images.load(image_name)
image_size_x = i.size[0]
image_size_y = i.size[1]
if image_size_x != resolution_x or image_size_y != resolution_y:
log.info(f"Z Buffer Size Changed: {i.size} {resolution_x} {resolution_y}")
o.update_z_buffer_image_tag = True
except:
o.update_z_buffer_image_tag = True
if o.update_z_buffer_image_tag:
blender_version = int(bpy.app.version_string[0])
scene = bpy.context.scene
view_layer = bpy.context.view_layer
render = scene.render
SETTINGS_TO_BACKUP = [
(render, "resolution_x"),
(render, "resolution_x"),
(render, "resolution_percentage"),
(scene.cycles, "samples"),
(scene, "camera"),
(view_layer, "samples"),
(view_layer.cycles, "use_denoising"),
(scene.world, "mist_settings"),
]
for ob in scene.objects:
SETTINGS_TO_BACKUP.append((ob, "hide_render"))
backup_settings = None
############################################################3
try:
backup_settings = _backup_render_settings(SETTINGS_TO_BACKUP)
# prepare nodes first
# various settings for faster render
render.resolution_percentage = 100
render.resolution_x = resolution_x
render.resolution_y = resolution_y
# use cycles for everything because
# it renders okay on github actions
render.engine = "CYCLES"
scene.cycles.samples = 1
view_layer.samples = 1
view_layer.cycles.use_denoising = False
view_layer.use_pass_mist = True
# If Blender is v5 or greater, use the new Compositor settings
if blender_version >= 5:
if scene.compositing_node_group == None:
bpy.ops.node.new_compositing_node_group()
for group in bpy.data.node_groups:
if group.type == "COMPOSITING" and "Render Layers" in group.nodes:
scene.compositing_node_group = group
node_tree = scene.compositing_node_group
nodes = node_tree.nodes
render_layers = nodes["Render Layers"]
reroute = nodes["Reroute"]
try:
file_output = nodes["File Output"]
except KeyError:
file_output = node_tree.nodes.new("CompositorNodeOutputFile")
file_output.file_output_items.new(socket_type="RGBA", name="")
file_output.directory = os.path.dirname(image_name)
file_output.file_name = os.path.basename(image_name)
file_output.format.media_type = "IMAGE"
file_output.format.file_format = "OPEN_EXR"
file_output.format.color_mode = "RGB"
file_output.format.color_depth = "32"
node_tree.links.new(
render_layers.outputs[render_layers.outputs.find("Mist")],
reroute.inputs[0],
)
node_tree.links.new(
reroute.outputs[0],
file_output.inputs[0],
)
# If Blender is v4 or lower, use the legacy Compositor settings
else:
scene.use_nodes = True
node_tree = scene.node_tree
node_tree.links.clear()
node_tree.nodes.clear()
node_in = node_tree.nodes.new("CompositorNodeRLayers")
scene.view_layers[node_in.layer].use_pass_mist = True
node_out = node_tree.nodes.new("CompositorNodeOutputFile")
node_out.base_path = os.path.dirname(image_name)
node_out.format.file_format = "OPEN_EXR"
node_out.format.color_mode = "RGB"
node_out.format.color_depth = "32"
node_out.file_slots.new(os.path.basename(image_name))
node_tree.links.new(
node_in.outputs[node_in.outputs.find("Mist")],
node_out.inputs[-1],
)
mist_settings = scene.world.mist_settings
mist_settings.depth = 10.0
mist_settings.start = 0
mist_settings.falloff = "LINEAR"
mist_settings.height = 0
mist_settings.intensity = 0
# resize operation image
o.offset_image = np.full(
shape=(resolution_x, resolution_y),
fill_value=-10,
dtype=np.double,
)
# Add a Camera and settings
bpy.ops.object.camera_add(
align="WORLD",
enter_editmode=False,
location=(0, 0, 0),
rotation=(0, 0, 0),
)
camera = bpy.context.active_object
bpy.context.scene.camera = camera
camera.data.type = "ORTHO"
camera.data.ortho_scale = max(
resolution_x * pixsize,
resolution_y * pixsize,
)
camera.location = (
o.min.x + size_x / 2,
o.min.y + size_y / 2,
1,
)
camera.rotation_euler = (0, 0, 0)
camera.data.clip_end = 10.0
for ob in scene.objects:
ob.hide_render = True
for ob in o.objects:
ob.hide_render = False
bpy.ops.render.render()
if blender_version < 5:
node_tree.nodes.remove(node_out)
node_tree.nodes.remove(node_in)
camera.select_set(True)
bpy.ops.object.delete()
# os.replace(image_name + "%04d.exr" % (scene.frame_current), image_name)
finally:
if backup_settings is not None:
_restore_render_settings(SETTINGS_TO_BACKUP, backup_settings)
else:
log.info("Failed to Backup Scene Settings")
i = bpy.data.images.load(image_name)
print(f"Image load: {image_name}")
bpy.context.scene.render.engine = "FABEX_RENDER"
####################################################################
image_array = image_to_numpy(i)
image_array = 10.0 * image_array
image_array = 1.0 - image_array
o.zbuffer_image = image_array
o.update_z_buffer_image_tag = False
else:
i = bpy.data.images[o.source_image_name]
image_size_x = i.size[0]
image_size_y = i.size[1]
if o.source_image_crop:
crop_start_x = o.source_image_crop_start_x
crop_end_x = o.source_image_crop_end_x
crop_start_y = o.source_image_crop_start_y
crop_end_y = o.source_image_crop_end_y
start_x = int(image_size_x * crop_start_x / 100.0)
end_x = int(image_size_x * crop_end_x / 100.0)
start_y = int(image_size_y * crop_start_y / 100.0)
end_y = int(image_size_y * crop_end_y / 100.0)
else:
start_x = 0
end_x = image_size_x
start_y = 0
end_y = image_size_y
border_width = o.borderwidth
pixsize = o.source_image_size_x / image_size_x
progress("Pixel Size in the Image Source", pixsize)
raw_image = image_to_numpy(i)
image_array_max = np.max(raw_image)
image_array_min = np.min(raw_image)
negative = o.source_image_scale_z < 0
# waterline strategy needs image border to have ok ambient.
if o.strategy == "WATERLINE":
image_array = np.full(
shape=(
2 * border_width + image_size_x,
2 * border_width + image_size_y,
),
fill_value=1 - negative,
dtype=float,
)
else: # other operations like parallel need to reach the border
image_array = np.full(
shape=(
2 * border_width + image_size_x,
2 * border_width + image_size_y,
),
fill_value=negative,
dtype=float,
)
image_array[
border_width:-border_width,
border_width:-border_width,
] = raw_image
image_array = image_array[
start_x : end_x + border_width * 2,
start_y : end_y + border_width * 2,
]
if negative:
# negative images place themselves under the 0 plane by inverting through scale multiplication
# first, put the image down, se we know the image minimum is on 0
image_array = image_array - image_array_min
image_array *= o.source_image_scale_z
else: # place positive images under 0 plane, this is logical
# first, put the image down, se we know the image minimum is on 0
image_array = image_array - image_array_min
image_array *= o.source_image_scale_z
image_array -= (image_array_max - image_array_min) * o.source_image_scale_z
image_array += o.source_image_offset.z # after that, image gets offset.
o.min_z = np.min(image_array) # TODO: I really don't know why this is here...
o.min.z = np.min(image_array)
o.zbuffer_image = image_array
log.info(f"Min Z {o.min.z}")
log.info(f"Max Z {o.max.z}")
log.info(f"Min Image {np.min(image_array)}")
log.info(f"Max Image {np.max(image_array)}")
progress(time.time() - t)
o.update_z_buffer_image_tag = False
return o.zbuffer_image
[docs]
async def prepare_area(o):
"""Prepare the area for rendering by processing the offset image.
This function handles the preparation of the area by rendering a sample
image and managing the offset image based on the provided options. It
checks if the offset image needs to be updated and loads it if
necessary. If the inverse option is set, it adjusts the samples
accordingly before calling the offsetArea function. Finally, it saves
the processed offset image.
Args:
o (object): An object containing various properties and methods
required for preparing the area, including flags for
updating the offset image and rendering options.
"""
# if not o.use_exact:
render_sample_image(o)
samples = o.zbuffer_image
iname = get_cache_path(o) + "_off.exr"
if not o.update_offset_image_tag:
progress("Loading Offset Image")
try:
o.offset_image = image_to_numpy(bpy.data.images.load(iname))
except:
o.update_offset_image_tag = True
if o.update_offset_image_tag:
if o.inverse:
samples = np.maximum(samples, o.min.z - 0.00001)
await offset_area(o, samples)
numpy_save(o.offset_image, iname)
# search edges for pencil strategy, another try.
[docs]
def image_edge_search_on_line(o, ar, zimage):
"""Search for edges in an image using a pencil strategy.
This function implements an edge detection algorithm that simulates a
pencil-like movement across the image represented by a 2D array. It
identifies white pixels and builds chunks of points based on the
detected edges. The algorithm iteratively explores possible directions
to find and track the edges until a specified condition is met, such as
exhausting the available white pixels or reaching a maximum number of
tests.
Args:
o (object): An object containing parameters such as min, max coordinates, cutter
diameter,
border width, and optimisation settings.
ar (np.ndarray): A 2D array representing the image where edge detection is to be
performed.
zimage (np.ndarray): A 2D array representing the z-coordinates corresponding to the image.
Returns:
list: A list of chunks representing the detected edges in the image.
"""
minx, miny, minz, maxx, maxy, maxz = o.min.x, o.min.y, o.min.z, o.max.x, o.max.y, o.max.z
r = ceil((o.cutter_diameter / 12) / o.optimisation.pixsize) # was commented
coef = 0.75
maxarx = ar.shape[0]
maxary = ar.shape[1]
directions = ((-1, -1), (0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0))
indices = ar.nonzero() # first get white pixels
startpix = ar.sum()
totpix = startpix
chunk_builders = []
xs = indices[0][0]
ys = indices[1][0]
nchunk = CamPathChunkBuilder([(xs, ys, zimage[xs, ys])]) # startposition
dindex = 0 # index in the directions list
last_direction = directions[dindex]
test_direction = directions[dindex]
i = 0
perc = 0
itests = 0
totaltests = 0
maxtotaltests = startpix * 4
ar[xs, ys] = False
while totpix > 0 and totaltests < maxtotaltests: # a ratio when the algorithm is allowed to end
if perc != int(100 - 100 * totpix / startpix):
perc = int(100 - 100 * totpix / startpix)
progress("Pencil Path Searching", perc)
success = False
testangulardistance = 0 # distance from initial direction in the list of direction
testleftright = False # test both sides from last vector
while not success:
xs = nchunk.points[-1][0] + test_direction[0]
ys = nchunk.points[-1][1] + test_direction[1]
if xs > r and xs < ar.shape[0] - r and ys > r and ys < ar.shape[1] - r:
test = ar[xs, ys]
if test:
success = True
if success:
nchunk.points.append([xs, ys, zimage[xs, ys]])
last_direction = test_direction
ar[xs, ys] = False
if 0:
log.info("Success")
log.info(f"{xs}, {ys}, {testlength}, {testangle}")
log.info(lastvect)
log.info(testvect)
log.info(itests)
else:
test_direction = last_direction
if testleftright:
testangulardistance = -testangulardistance
testleftright = False
else:
testangulardistance = -testangulardistance
testangulardistance += 1 # increment angle
testleftright = True
if abs(testangulardistance) > 6: # /testlength
testangulardistance = 0
indices = ar.nonzero()
totpix = len(indices[0])
chunk_builders.append(nchunk)
if len(indices[0] > 0):
xs = indices[0][0]
ys = indices[1][0]
nchunk = CamPathChunkBuilder([(xs, ys, zimage[xs, ys])]) # startposition
ar[xs, ys] = False
else:
nchunk = CamPathChunkBuilder([])
test_direction = directions[3]
last_direction = directions[3]
success = True
itests = 0
if len(nchunk.points) > 0:
if nchunk.points[-1][0] + test_direction[0] < r:
testvect.x = r
if nchunk.points[-1][1] + test_direction[1] < r:
testvect.y = r
if nchunk.points[-1][0] + test_direction[0] > maxarx - r:
testvect.x = maxarx - r
if nchunk.points[-1][1] + test_direction[1] > maxary - r:
testvect.y = maxary - r
dindexmod = dindex + testangulardistance
while dindexmod < 0:
dindexmod += len(directions)
while dindexmod > len(directions):
dindexmod -= len(directions)
test_direction = directions[dindexmod]
if 0:
log.info(
f"{xs}, {ys}, {test_direction}, {last_direction}, {testangulardistance}"
)
log.info(totpix)
itests += 1
totaltests += 1
i += 1
if i % 100 == 0:
totpix = ar.sum()
i = 0
chunk_builders.append(nchunk)
for ch in chunk_builders:
ch = ch.points
for i in range(0, len(ch)):
ch[i] = (
(ch[i][0] + coef - o.borderwidth) * o.optimisation.pixsize + minx,
(ch[i][1] + coef - o.borderwidth) * o.optimisation.pixsize + miny,
ch[i][2],
)
return [c.to_chunk() for c in chunk_builders]
[docs]
def get_offset_image_cavities(o, i): # for pencil operation mainly
"""Detects areas in the offset image which are 'cavities' due to curvature
changes.
This function analyzes the input image to identify regions where the
curvature changes, indicating the presence of cavities. It computes
vertical and horizontal differences in pixel values to detect edges and
applies a threshold to filter out insignificant changes. The resulting
areas are then processed to remove any chunks that do not meet the
minimum criteria for cavity detection. The function returns a list of
valid chunks that represent the detected cavities.
Args:
o: An object containing parameters and thresholds for the detection
process.
i (np.ndarray): A 2D array representing the image data to be analyzed.
Returns:
list: A list of detected chunks representing the cavities in the image.
"""
progress("Detect Corners in the Offset Image")
vertical = i[:-2, 1:-1] - i[1:-1, 1:-1] - o.pencil_threshold > i[1:-1, 1:-1] - i[2:, 1:-1]
horizontal = i[1:-1, :-2] - i[1:-1, 1:-1] - o.pencil_threshold > i[1:-1, 1:-1] - i[1:-1, 2:]
ar = np.logical_or(vertical, horizontal)
if 1: # this is newer strategy, finds edges nicely, but pff.going exacty on edge,
# it has tons of spikes and simply is not better than the old one
iname = get_cache_path(o) + "_pencilthres.exr"
# numpysave(ar,iname)#save for comparison before
chunks = image_edge_search_on_line(o, ar, i)
iname = get_cache_path(o) + "_pencilthres_comp.exr"
log.info("New Pencil Strategy")
# crop pixels that are on outer borders
for chi in range(len(chunks) - 1, -1, -1):
chunk = chunks[chi]
chunk.clip_points(o.min.x, o.max.x, o.min.y, o.max.y)
if chunk.count() < 2:
chunks.pop(chi)
return chunks
[docs]
def image_to_chunks(o, image, with_border=False):
"""Convert an image into chunks based on detected edges.
This function processes a given image to identify edges and convert them
into polychunks, which are essentially collections of connected edge
segments. It utilizes the properties of the input object `o` to
determine the boundaries and size of the chunks. The function can
optionally include borders in the edge detection process. The output is
a list of chunks that represent the detected polygons in the image.
Args:
o (object): An object containing properties such as min, max, borderwidth,
and optimisation settings.
image (np.ndarray): A 2D array representing the image to be processed,
expected to be in a format compatible with uint8.
with_border (bool?): A flag indicating whether to include borders
in the edge detection. Defaults to False.
Returns:
list: A list of chunks, where each chunk is represented as a collection of
points that outline the detected edges in the image.
"""
t = time.time()
minx, miny, minz, maxx, maxy, maxz = o.min.x, o.min.y, o.min.z, o.max.x, o.max.y, o.max.z
pixsize = o.optimisation.pixsize
image = image.astype(np.uint8)
edges = []
ar = image[:, :-1] - image[:, 1:]
indices1 = ar.nonzero()
borderspread = 2
# when the border was excluded precisely, sometimes it did remove some silhouette parts
r = o.borderwidth - borderspread
# to prevent outline of the border was 3 before and also (o.cutter_diameter/2)/pixsize+o.borderwidth
if with_border:
r = 0
w = image.shape[0]
h = image.shape[1]
coef = 0.75 # compensates for imprecisions
for id in range(0, len(indices1[0])):
a = indices1[0][id]
b = indices1[1][id]
if r < a < w - r and r < b < h - r:
edges.append(((a - 1, b), (a, b)))
ar = image[:-1, :] - image[1:, :]
indices2 = ar.nonzero()
for id in range(0, len(indices2[0])):
a = indices2[0][id]
b = indices2[1][id]
if r < a < w - r and r < b < h - r:
edges.append(((a, b - 1), (a, b)))
polychunks = []
d = {}
for e in edges:
d[e[0]] = []
d[e[1]] = []
for e in edges:
verts1 = d[e[0]]
verts2 = d[e[1]]
verts1.append(e[1])
verts2.append(e[0])
if len(edges) > 0:
ch = [edges[0][0], edges[0][1]] # first and his reference
d[edges[0][0]].remove(edges[0][1])
i = 0
specialcase = 0
while len(d) > 0 and i < 20000000:
verts = d.get(ch[-1], [])
closed = False
if len(verts) <= 1: # this will be good for not closed loops...some time
closed = True
if len(verts) == 1:
ch.append(verts[0])
verts.remove(verts[0])
elif len(verts) >= 3:
specialcase += 1
v1 = ch[-1]
v2 = ch[-2]
white = image[v1[0], v1[1]]
comesfromtop = v1[1] < v2[1]
comesfrombottom = v1[1] > v2[1]
comesfromleft = v1[0] > v2[0]
comesfromright = v1[0] < v2[0]
take = False
for v in verts:
if v[0] == ch[-2][0] and v[1] == ch[-2][1]:
verts.remove(v)
if not take:
if (not white and comesfromtop) or (white and comesfrombottom):
# goes right
if v1[0] + 0.5 < v[0]:
take = True
elif (not white and comesfrombottom) or (white and comesfromtop):
# goes left
if v1[0] > v[0] + 0.5:
take = True
elif (not white and comesfromleft) or (white and comesfromright):
# goes down
if v1[1] > v[1] + 0.5:
take = True
elif (not white and comesfromright) or (white and comesfromleft):
# goes up
if v1[1] + 0.5 < v[1]:
take = True
if take:
ch.append(v)
verts.remove(v)
else: # here it has to be 2 always
done = False
for vi in range(len(verts) - 1, -1, -1):
if not done:
v = verts[vi]
if v[0] == ch[-2][0] and v[1] == ch[-2][1]:
verts.remove(v)
else:
ch.append(v)
done = True
verts.remove(v)
# or len(verts)<=1:
if v[0] == ch[0][0] and v[1] == ch[0][1]:
closed = True
if closed:
polychunks.append(ch)
for si, s in enumerate(ch):
if si > 0: # first one was popped
if d.get(s, None) is not None and len(d[s]) == 0:
# this makes the case much less probable, but i think not impossible
d.pop(s)
if len(d) > 0:
newch = False
while not newch:
v1 = d.popitem()
if len(v1[1]) > 0:
ch = [v1[0], v1[1][0]]
newch = True
i += 1
if i % 10000 == 0:
log.info(len(ch))
log.info(i)
vecchunks = []
for ch in polychunks:
vecchunk = []
vecchunks.append(vecchunk)
for i in range(0, len(ch)):
ch[i] = (
(ch[i][0] + coef - o.borderwidth) * pixsize + minx,
(ch[i][1] + coef - o.borderwidth) * pixsize + miny,
0,
)
vecchunk.append(Vector(ch[i]))
reduxratio = 1.25 # was 1.25
soptions = [
"distance",
"distance",
o.optimisation.pixsize * reduxratio,
5,
o.optimisation.pixsize * reduxratio,
]
nchunks = []
for i, ch in enumerate(vecchunks):
s = curve_simplify.simplify_RDP(ch, soptions)
nch = CamPathChunkBuilder([])
for i in range(0, len(s)):
nch.points.append((ch[s[i]].x, ch[s[i]].y))
if len(nch.points) > 2:
nchunks.append(nch.to_chunk())
return nchunks
else:
return []